Try the Free Math Solver or Scroll down to Tutorials!

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

Please use this form if you would like
to have this math solver on your website,
free of charge.


Math 135 Final Exam Study Guide

Solve the system of equations by substitution.

Solve the system of equations.

Give the equation of the specified asymptote(s).
53) Vertical asymptote(s):
54) Vertical asymptote(s):
55) Vertical asymptote(s):

State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not.

Solve the equation. Find all real solutions.
63) x3 + 2x2 - 5x - 6 = 0
64) 2x3 - x2 - 10x + 5 = 0

Form a polynomial whose zeros and degree are given.
65) Zeros: 0, - 7, 6; degree 3
66) Zeros: -3, -2, 3; degree 3
67) Zeros: -1, 1, - 5; degree 3

List the potential rational zeros of the polynomial function. Do not find the zeros.
68) f(x) = 5x3 - x2 + 3
69) f(x) = 6x4 + 3x3 - 4x2 + 2
70) f(x) = x5 - 6x2 + 6x + 7

Use synthetic division to find the rmaining zeros of the polynomial.
71) f(x) = x3 - 3x2 - 5x + 39; zero: -3
72) f(x) = x3 - 2x2 - 11x + 52; zero: -4

Find all of the real zeros of the polynomial function, then use the real zeros to factor f over the real numbers.
73) f(x) = x3 + 2x2 - 9x - 18

Find all the (real and complex) zeros of the polynomial function.
74) f(x) = x4 - 8x3 + 16x2 + 8x - 17

Answer Key
Testname: 135STUDYGUIDE

1) decreasing
(a) (-4, 0.5); (b) (3.5, 6); (c) (-5, -4) U (0.5, 3.5);
(d) (-5, 6); (e) (-3, 2); (f) -3; (g) -1.1; (h) -1.2; 5.2; (i) -1.2; 5.2; (j) 1.4
2) 6
3) - 5
4) 3
5) not a function
6) function
domain: {Bob, Ann, Dave}
range: {Ms. Lee, Mr. Bar}
7) {x|x ≠ -1, 1}
8) all real numbers
9) {x|x ≤ 4}
10) (f + g)(x) = -15x + 13; all real numbers
11) (f + g)(x) = -6x + 8; all real numbers
12) (f - g)(x) = -4x + 1; all real numbers
13) (f - g)(x) = 6x - 1; all real numbers
14) (f · g)(x) = 15x2 - 2x - 1; all real numbers
15) (f · g)(x) = 20x2 + 52x + 24; all real numbers

18) function
domain: {x|x ≥ -2}
range: {y|y ≤ 0}
x- intercepts: (-2, 0), (2, 0)
y-intercept: (0, -2)
19) not a function


22) 30x + 3
23) 9x + 7
24) 8x2 + 4x + 6
25) 8x2 + 4x + 5
26) 2x + h - 7
27) 2x + h + 6
28) vertex (-1, 9)
x-intercepts (2, 0), (- 4, 0)
y-intercept (0, 8)
Axis of symmetry: x = -1

29) vertex (1, -4)
intercepts (3, 0), (- 1, 0), (0, -3)

30) Yes
31) No

33) Not a one-to-one function

35) 2
36) 3
37) 5
38) 5
39) x > 10
40) x > 8
41) 661 students
42) $6749
43) $2304.54
44) $2854.34
45) $825.81
46) x = 0, y = 1
47) x = 100, y = -27
48) x = 18, y = -6
49) x = 4.5, y = -13.5
50) x = 12, y = -2
51) inconsistent
52) y = -7x + 7, where x is any real number
53) x = 2, x = -2
54) x = 3
55) x = -7, x = -5
56) Yes; degree 5
57) Yes; degree 4
58) No; x is raised to a negative power
59) No; x is raised to non-integer 3/2 power
60) Yes; degree 2
61) Yes; degree 1
62) Yes; degree 2
63) {-3, -1, 2}

65) f(x) = x3 + x2 - 42x for a = 1
66) f(x) = x3 + 2x2 - 9x - 18 for a = 1
67) f(x) = x3 + 5x2 - x - 5 for a = 1
68) ±1/5,  ±3/5 , ±1,  ±3
69) ±1/6,  ±1/3,  ±1/2,  ± 2/3,  ±1,  ±2
70) ± 1, ± 7
71) 3 + 2i, 3 - 2i
72) 3 + 2i, 3 - 2i
73) -3, -2, 3; f(x) = (x + 3)(x + 2)(x - 3)
74) 1, -1, 4 - i, 4 + i